24.3 The Light-Dependent Reactions

The overall function of light-dependent reactions is to convert solar energy into chemical energy in the form of NADPH and ATP. This chemical energy is then used during the light-independent reactions (Calvin cycle) to build sugar molecules.

The actual step that converts light energy into chemical energy takes place in a multiprotein complex called a photosystem, two types of which are found embedded in the thylakoid membrane: photosystem II (PSII) and photosystem I (PSI).

Both photosystems have the same basic structure; a number of antenna proteins to which pigment molecules are bound surround the reaction center where the photochemistry takes place. The approximately 300 antenna pigments of each photosystem serve as a light-harvesting complex; they absorb photons of light and transfer the acquired energy to two special chlorophyll a molecules that serve as the reaction center.  The absorption of a single photon or distinct quantity or “packet” of light by a pigment molecule pushes that molecule into an excited state. In short, the light energy has now been captured by biological molecules but is not stored in any useful form yet. The energy is transferred from chlorophyll to chlorophyll until eventually (after about a millionth of a second), it is delivered to the reaction center. Up to this point, only energy has been transferred between molecules, not electrons.

 

Photosystem I and II
A photosystem consists of 1) a light-harvesting complex and 2) a reaction center. Pigments in the light-harvesting complex pass light energy to two special chlorophyll a molecules in the reaction center. The light excites an electron from the chlorophyll a pair, which passes to the primary electron acceptor. The excited electron must then be replaced. In (a) photosystem II, the replacement electron comes from the splitting of water, which releases oxygen as a waste product. In (b) photosystem I, the electron comes from the chloroplast electron transport chain. (Figure by OpenStax is used under a Creative Commons Attribution license).

The reaction center contains a pair of chlorophyll a molecules with a special property. Those two chlorophylls can undergo oxidation upon excitation; they can actually release a high energy electron. A subsequent steps will eventually attach this high energy electron to NADP+ to produce the energy carrier NADPH for delivery to the Calvin cycle where the electron is deposited onto carbon for long-term storage in the form of a carbohydrate.

The reaction center of PSII (called P680) delivers its high-energy electrons, one at the time, through the electron transport chain to PSI. P680’s missing electron is replaced by extracting a low-energy electron from water; thus, water is “split” during this stage of photosynthesis, and PSII is re-reduced. Splitting one H2O molecule releases two electrons, two hydrogen atoms, and one atom of oxygen. However, splitting two molecules is required to form one molecule of diatomic O2 gas. About 10 percent of the oxygen is used by mitochondria in the leaf to support oxidative phosphorylation. The remainder escapes to the atmosphere where it is used by aerobic organisms to support respiration.

This illustration shows the components involved in the light reactions, which are all embedded in the thylakoid membrane. Photosystem I I uses light energy to strip electrons from water, producing half an oxygen molecule and two protons in the process. The excited electron is then passed through the chloroplast electron transport chain to photosystem I. Photosystem I passes the electron to N A D P superscript plus sign baseline reductase, which uses it to convert N A D P superscript plus sign baseline and a proton to N A D P H. As the electron transport chain moves electrons, it pumps protons into the thylakoid lumen. The splitting of water also adds electrons to the lumen, and the reduction of N A D P H removes protons from the stroma. The net result is a low lower case p upper case H inside the thylakoid lumen, and a high lower p upper H outside, in the stroma. A T P synthase embedded the thylakoid  membrane moves protons down their electrochemical gradient, from the lumen to the stroma, and uses the energy from this gradient to make A T P.
In the photosystem II (PSII) reaction center, energy from sunlight is used to extract electrons from water. The electrons travel through the chloroplast electron transport chain to photosystem I (PSI), which reduces NADP+ to NADPH. The electron transport chain moves protons across the thylakoid membrane into the lumen. At the same time, splitting of water adds protons to the lumen, and reduction of NADPH removes protons from the stroma. The net result is a low pH in the thylakoid lumen, and a high pH in the stroma. ATP synthase uses this electrochemical gradient to make ATP. (Figure by Melissa Hardy is used under a Creative Commons Attribution-NonCommercial license. Created with BioRender.com)

As electrons move through the proteins that reside between PSII and PSI, they release energy. This energy is used to move hydrogen atoms from the stromal side of the membrane to the thylakoid lumen. Those hydrogen atoms, plus the ones produced by splitting water, accumulate in the thylakoid lumen and will be used synthesize ATP in a later step. Because the electrons have lost energy prior to their arrival at PSI, they must be re-energized by PSI, hence, another photon is absorbed by the PSI antenna. That energy is relayed to the PSI reaction center (called P700). P700 is oxidized and sends a high-energy electron to NADP+ to form NADPH. Thus, PSII captures the energy to create proton gradients to make ATP, and PSI captures the energy to reduce NADP+ into NADPH. The two photosystems work in concert, in part, to guarantee that the production of NADPH will roughly equal the production of ATP. Other mechanisms exist to fine-tune that ratio to exactly match the chloroplast’s constantly changing energy needs.

Chemiosmosis

As in the intermembrane space of the mitochondria during cellular respiration, the buildup of hydrogen ions inside the thylakoid lumen creates a concentration gradient. The passive diffusion of hydrogen ions from high concentration (in the thylakoid lumen) to low concentration (in the stroma) is harnessed to create ATP, just as in the electron transport chain of cellular respiration.


Text adapted from OpenStax Biology 2e and used under a Creative Commons Attribution License 4.0.
Access for free at https://openstax.org/books/biology-2e/pages/1-introduction
definition

License

Icon for the Creative Commons Attribution-NonCommercial 4.0 International License

College Biology I Copyright © by Melissa Hardy is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted.